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Abstract

After developing a complete set of eigenfunctions for a Dirac particle restricted to a box, the quantum Zeno dynamics
of a relativistic system is considered. The evolution of a continuously observed quantum mechanical system is governed by
the theorem put forth by Misra and Sudarshan. One of the conditions for quantum Zeno dynamics to be manifest is that the
Hamiltonian is semi-bounded. This Letter analyzes the effects of continuous observation of a particle whose time evolution is
generated by the Dirac Hamiltonian. The theorem by Misra and Sudarshan is not applicable here since the Dirac operator is not
semi-bounded.
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1. Introduction

The central purpose of this Letter is to point out the effects of continuous measurement of a relativistic quantum
system. IM1], the authors have listed the necessary requinesmaf the Hamiltonian operator to exhibit Quantum
Zeno Dynamics (QZD). One of the gtilation under which the theorem digs is that the Hamiltonian be lower
semi-bounded. This criterion is readily met by a non-relativistic electron. The Schrédinger equation restricts the
energy eigenvalues of a quantum system to be bounded from below. Thus, as is sf@\thi& non-relativistic
electron does indeed exhibit QZD. In the body of our Letter we will make it clear as to what it means for a quantum
mechanical system to exhibit QZD.
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The Dirac operator does permit negative energytimhs, and this makes the operator in general unbounded.
It is essential to point out that, just because the non-wedtitt electron does in fact demonstrate QZD, there is no
reason to expect the particle described by the Dicpméon (as opposed to the second quantized Hamiltonian) to
be subject to the same requirements. After all, the negative energy states have to be reinterpreted to formulate a
consistent theory of relativistic electrons as in quantum electrodynamics. Nonetheless, it should not be shocking to
realize that the Dirac operator does in fact permit QZD, as will be shown in the latter half of the Letter.

As Facchi et al. has shown (si4) for the non-relativistic case, considerable simplification in calculation occurs
if we have with us a complete list of eigenfunctions for tharticle in a box” Hamiltonian. For the non-relativistic
case, these eigenfunctions are well known (for examplg33e&Vith this in mind, we construct a complete system
of eigenfunctions for the Dirac particle in a box in the first part of the Lettdd 51, the authors do in fact compute
the positive spectrum for the particle in a box. Our calculations require the complete spectrum (i.e., including the
negative energy states). In addition, in order to construct a complete spectrum, we do not use the same boundary
conditions as if{4,5]. In fact, boundary conditions are not used at albbtain the eigenfunions; instead, we
subject the wavefunctions to “a priori” requirements, which will be justified at the end.

2. Dirac particlein abox

We seek to construct an explicit list of eigenstates for a relativistic particle confined to an infinitely deep square
well. Our calculations will be restricted to one spatial dimension. The Hamiltonian governing the system will be
the classical Dirac operator combined with a suitable potential operator that will confine the states to a well. In 1D,
the Dirac operator will be given by

. 20
HD=)/O|:—I)/?’8—Z —I—m] 1)

wherey? = (é _OI) andy3 = (_?;3 ). whereos is a (2 x 2) Pauli matrix, and/ is the (2 x 2) identity matrix
(the representation used here is as given in the Appendix[8] pflt is well known thaf4,5], one-way to confine
the states to a certain region, is to make the parameggopearing in(1) be a function of position. The resulting
modification of the Dirac operator will derexd by the “particle in a box” Hamiltoniarf/gox. As usual, the time

evolution of the physical states must satisfy

0
HBoxlﬁ(t,x):(HD—i-Vo)l/f:la—lﬁf, (2)
whereHp is defined by(1) and
Vo=y"M[1— fa(x)]. ®)

The constand/ will ultimately go to infinity, andy 4 is the characteristic function:
- _J1, xeA, whereA=[0, L],
Xa= {O, otherwise “)

Our “box” separates space into three different regioggions |, 11, and Il are dfined by the inequalities< 0,
0<z< L,andz > L, respectively. From Eq$2)—(4), it is clear that in the three separate regions, the wave function
will satisfy the Dirac equation (albeit with a non traditional mass). We will build our eigenfunctions by piecing
together eigenfunctions of the free Dirac operator. riors | and 111, the spatial dependence of the wavefunction
is given bye ¥ ande*'*| respectively (wheré’ = /E2 — (M + m)?) since we want our wavefunctions to be
bounded at infinity. Clearly, in the infinit®7 limit we find that the wavefunctions outside the box vanishes as
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required. The positive energy eigenstates in region Il are then given by

. X . X
Vi =A/elkz< ok’ ) + Bje ( o ) ©)
E+m Xj E+m Xj

Here, ‘4" refers to the positive energy eigenstates, gnd 1 refers to the spin up state arid= 2 refers to the
spin down state. As usual, the two component spjrjois given byx1 = (5) andx2 = (2) The energy eigenvalue
is related to the parametgras follows:E = vk2 + m?2, and(2) implies thaty; ;(z, 1) = ¥4 j(z)e~'E". Similar
superposition states can be constructed for the negative energy states.

We wish to construct a Hamiltonian operatpoy that is self-adjoint. Since the final Hilbert space will be
defined as the closed linear span of all the eigenfunctior#ggf, the operator will naturally be densely defined.
The Hermitian property offgox requires that

(V1| Heox¥i1) = (Hox¥1 1Y) = (i | Heox¥1) ™, (6)

whenv, andyy are from the domain offgox (here(x) refers to complex conjugation). The Hermitian property
of y0 and a simple integration by parts give

(W )" = vy ©)
and
L
CIA _ )
/dz %[Iyoy?ﬂ% =1//IT[I)/ 14 1/f|| /lefleyoyg 1/f|| o

0

Herey T is the adjoint of the column vector (as opposed to the Dirac adjpiaty T 0). Eqgs.(7) and (8)imply
that for(6) to be satisfied, we need the eigenfunctions to satisfy

Ty, =0. ©

As we shall see, the above condition facilitates a séjbiat Zeno HamiltonianAlthough our eigenfunctions
will satisfy this requirement without any added effargre is taken in pointing thicondition for the Hermitian
property of the Hamiltonian, because this is precigbly condition that will make our calculations of quantum
Zeno dynamics possible.

In this section, we shall point out the essential details in computing (the calculations for the other states
are essentially a reproduction with the appropriate free particle Dirac spin{B$).imThe probability flux of the
wave function inside the box is given by

Je =y = g (1A 1P = B 7], (10)

Since the flux vanishes outside the box tonstancy of probability flux implies thdt = 0. This can be achieved

by requiring thatB ; = e'b+-fA+,,-. Just asd, ;, and B, j, the constanb, ; in the exponential is a function

of the labelk. The only two undetermined coefficients left &g ; and A, ;. Unlike the usual treatments of the
“particle in a box” problem, we do not impose boundary dtinds on the wavefunctions directly (for example,
seg[4] for the relativistic case, an@] for the non-relativistic case). Instead we impose the condition that

Ai® — 1 forallk. -

The above condition might seem arbitrary at the moment, but in the end we will see that the eigenfunctions we
obtain are dense in the relevant Hilbert space. U§lijit is easy to show that states with different energy labels
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are orthogonal provided the only values taken on by the variabte given by:
nim

k=ky=—. (12)

wheren takes on any integer values. Consequently,

E=E,=/kZ+m?2. (13)

Upon normalization, and along with a suitable choice of phase factor, the wavefunction becomes

E,+m ( Sin(knz) x ) .
i A-
LE, \ 7% coskn2)x,

The negative energy states are obtained by the same means. The only exception is that we use a different relative
phase between the corresponding spino(&jnnamely,

|W+,j,n> = (14)

eb-i®%) =1 forallk. +

The resulting wavefunctions are

E,+m (E;_kﬁm Sin(an)Xj> _
LE, icostknz) x

Herey_ ;. (z,1) = w_,j,n(z)eiE"’ since Heox¥—, j.n = —En¥— jn (j =1, 2) because of13). Egs.(14) and (16)
give a complete list of eigenfunctions for a Dirac particle in a box.

In order to appreciate the Hilbert space formed by the states of a relativistic particle in a box, we define the
following spinors:

V- jn) = (16)

k

. 5 (SN2
[|x/f+,,-,n>+E+m|w,,-,n>]=\E< 0 )xA, (17)

0

0
o [Eitm[ ke TN \/? N
W/dowrlj,n) =1 2E, |:En T m |I//+,],n> |I//,],n>:| VI (Cogkgz)xj> XA (18)

Since{sin(k,z) | ky = n/L, n € N}, and{coSk,z) | k, = nm/L, n € N} form a basis for.?(A), from (17) and
(18) we find that the closed linear span(G#) and(16), and hence the Hilbert Space for our particle in a box is
given by

E,+m
2E,

[Yup.jn) =

Y1
Fox=1 v = ﬁ v e LAR) andy; 2 0inA =R\ A, j=14}, (19)
Va
along with the inner product
4 4 L
<¢|w>=2fdz¢;'fw,~=2fdz¢;fw,~. (20)
j=1—oo j=10

This justifies our assumptiorf41), and(15), since we can now expand any functionsigox Using our bases (as
long as the wavefunction vanishes outsidelibg). The domain of our Hamiltonian is taken to be

Dom(Hpox) = {¥ € HBox | ¥j isa.c.inA, j=1,4, ¥;(0)=v,(L)=0, j=12}. (21)
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Since the eigenfunctiond 4) and (16) belong to the DortHpoy), it is clear that the operatailgoy is densely
defined and thus symmetric.¢fe Dom(Hgox), then(9) would imply that

@1(L)Y3(L) — g2(L)Ya(L) — ¢1(0)¥3(0) + ¢2(0)y4(0) =0, (22)

for everyy € Dom(Hpoyx). This can happen if and only if the first two componentsgpof Dom(Hgox) vanish
at the end points. These are precisely all the spinors contained in the donféigofand hence, DoliHpox) =
Dom(HE‘;OX). Thus Hpox, as we have defined it, is a self-adjoint operator. It is also clear that, condifidpand
(15)impose Dirichlet boundary conditions on tle@de components of the wavefunctions.

The non-relativistic limit of the positive energy states are manifest: Bgre m, and Enkfrm
large components of the spindfst) become

NR 2 . (nm .
[Vt jn) —> [UNR,jn) = \/;Sm(TZ)XjXA, (23)
which is precisely the form given i8] for the non relativistic particle in a box. Here, the subscript NR in the
wavefunction refers to the non-relativistic limit of the large components of the positive energy Dirac spinors of the
particle in a box. We conclude our analysis of thetigh in a box by reiterating that our wavefunctiofis!), and
(16) does indeed satisfy the condition specified ®y

~ 0. Therefore, the

3. Rélativistic quantum Zeno dynamics

The notion of “Zeno’s paradox” as it was called wagially put forth by Misra and Sudarshan (MS theorem)

[2]. The purpose of this analysis is to test the time evolution of a quantum system under constant observation.
Recently, Facchi et aJ2] has been able to discuss the QZD of a Schroédinger type system with relative ease. This
relied on the use of a preferred bases set of the Hilbert space, namely: the eigenfunctions of the Zeno Hamiltonian.
The Zeno Hamiltonian, as it turns out is nothing more than the Schrédinger Hamiltonian for the particle in a box.

In this section, we wish to demonstrate the QZD of the Dirac Hamiltonian. While this is a specific example, it
does extend the theory put forth by Misra and Sudarshan. The MS theorem is proven in general for a Hamiltonian
that is semi-bounded. The Dirac operator is not. The problem regarding a not lower semi-bounded operator was
considered in some detail by Facchi, Gorini ef@]. They, however, were not concerned with the Dirac operator.

We show that the Dirac operator, although unbounded, exhibits QZD.

The tools we need to compute the QZD of the Dirac Hamnilin is essentially contained in the paper by Facchi
[2]. As mentioned in the first paragraph of this section, the availability of a preferred bases of the Zeno Hamiltonian
makes the calculations reasonable. In our case, the Zanltdnian is nothing more than the “Dirac particle in a
box” operator. This was exactly what was developed in the previous section.

Since the topic of QZD has been well treated in earlier publicatjibr®7], we will restrict the introductory
remarks to just serve our purposes. Consider a wavefungtgoimitially contained in the box of the previous
section. LetG o denote the propagator for the Dirac operdidr The wavefunction at some later timés given by

1/f(z’,t)=/Go(z’,t;z)llfo(z)dz=/Go(z’,t;z))?A(z)l/fo(z)dz, (24)

wherex 4 (z) is the characteristic function defined(#). If we now consider the effect of projecting the wavefunc-
tion onto our box, the resulting state isjlgiven by the natural projection:

(' ) = Y@ nxa@). (25)
The new state can be thought of as being generated with the modified propagator:

Go(Z',t;2) > xa(@)Go(@, 1; ) xa(2) = G(Z, 1; 2). (26)
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We now define what is meant by continuous observation of a quantum system. Lets divide the timeTnhietwal
N equal parts, and set= 7/N. The wavefunction afteN repeated projections of the previous type at set time
intervalr is given by

‘//(Z/,T)=/dYNfl"'/dy1/dZG(Z/,t;YNfl)"'G(YZ,ﬁY1)G(y1,t§2)1/f0(Z)- (27)

By continuous observation, we mean tNe— oo limit of (27). In general, it is not clear whether such limit even
exists. For the case of the Dirac operator we will show that the limit does indeed exists, and we will calculate the
resulting propagator. I{27), we may as well dispense with the information of the initial wavefunction, and focus
instead on the kernel

K(z’,T;z)=N|iinoofdy1v_1-~-/dy10(z’,t; yn-1) - G(y1,1; 2). (28)

If the Hamiltonian governing the quantum mechanical system is such that the above limit exists, and if the resulting
Kernel is given by a unitary operator, we say that the system exhibits QZD. We begin our analysis by calculating
the propagatoGo. Here,Go is the propagator for the free Dirac operaffis. Let |+ ;(k)) for j =1, 2 represent

the usual (for example, s¢6]) orthonormal set of eigenfunctions &fp with one spatial dimension. Hereg;
subscript refers to the positive and atige eigenstates, respectivefy= 1, 2 refers to the spin up and spin down
states as well. The paramefecan take on any real values, and they correspond the momentum eigenvalue. It is
not difficult to see that:

T dk
Z / Z[|‘/f+,j(k))<‘/f+,j(k)| + |1/ff,j(_k)><1[/—,j(—k)’i| =1. (29)
J s

For clearity,

[ dk
23 / o s GO )|+ [y (R (=) 2)
J =00

o0
dk 1 -
— EE[(VOEI‘ _ y3k +m) _ (—yOEk _ y3k +m)]y0€|k(z —2)
Todk 1
= | 2rap @ EYETV =8G — O
—0o0

HereE; = vk2 + m? andly is the(4 x 4) identity matrix. The propagatd¥g is given byGo(x, t; y) = (x|U (t)|y),
whereU is the unitary operator generated By, i.e., U (1) = exp(—i Hpt). Using(29), we find that

[ dk
Go(x.1:y)={x| ) / o s GO )+ [y ()= [U@1y)
J =00

oo
- %%[(VOE" — %k m)e B — (—y OB — y %k 4 m)e! P Ty O, (30)
k

—00

In the above equation, the time dependencéefdropagator is calculated by noting that

(Ya j (U D]y) = exp(—i(£Exn)) (Y, (k)| y)
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sinceHp|y+ (k) = £E|y¥+ ;(k)). The propagato6 is given by(26). Simplifying (30), we find that

Gx, 1) = 7a(X)Fa() / 2—5 [2°Ex cos( Ext) + 2i(y 3k — m) sin(Ex1)]y P ). (31)

From (28), we see that there aré many such propagators in the Kernel, and since we are only interested in the
N — oo limit, and sincer = T/ N, we need only to approximate the above propagator to first ordeilimerefore,

Gx,1;y)~ xa(x)xa(y) / 2_E [2)Ex + 2i(y %k — m) Ext]ye* =) 4 O(12)
7 5 [ dk 3 0 ik(x—y) 2
— TA(FA)| 80 — y) + i / S (%= m)y P | 0. (32)

The above propagator has a compact support in the intgyval. Therefore, all relevant information is obtained
by calculating its matrix elements between a set of spinors deris& it). From(21)it clear that the spinor&l4)
and(16)are exactly what we need, and so weagt to evaluate elements of the type

(Ut am |GVt jn) =/dx dy (Yt e,m X)X G Y)YVt jon)- (33)

For definiteness, let us consid@ry «..|G|¥+, ;). The remaining elements can be evaluated in a like manner (of
which, we will just give the results). The zeroth order term yields identity because of the delta function. In order to
simplify the first order (irr) term in(32) we note that

myo(ylllf+,j,n>=[E +iy%3 5

d
}<y|w+,n> (34)

L

dk’ .
/ o Wt e 1) [ 170y = | 1 e ) da dly
2 y

0

L

dk’ o
/ — Uk O [iy PV 3] 019 ) O
0

y=L

21

y=0

dk’

- d .
EW**"”"|x)['V0V3]<y|w+,j,n>$elk O dx dy

|
Ot ~—

L

. =L dk/ , ik (x—

=8 =)Wk ol |+ / o Vs O [y O K Tl ) ) dx dy,
’ (35)
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which follows from a simple integration by parts. The first term in the right-hand si§@x)anishes due to the
Hermitian property9). Therefore,

L
dk’ ) d o
/ —— Wk 10| 1Y%= [l ) 7Y dx dy
2 dy
0
L
d’ 0.3, iK' (x—y)
= | 5= W dom [y VK )y 1¥ jn)e™ 7Y drdy. (36)
2w
0
Substituting(32), (34), and(36) in (33) we finally get that
(Wi kom |Gt jon) = (L= 1Ent)8ndij + O(1?). (37)
Similarly,
Wkl GV~ jn) = [L = I(=En)t]8,ndij + O(t%). (38)
Here, it is important to remember thatt, is the energy of the negative energy states. Finally,
W tm|G Yt jn) = (Vs km|G1Y— ) = 0+ O(?). (39)

The time evolution of quantum states under continuous observation for a finit§timgiven by the Kernel

(Yt km| K|+, jn) = / dz’ dz (Vs km |2V K (2, T ) 2|V, jin)-
Using (37)—(39) we find that

Yadkm KIWsjn) =e BT 8.80, (e aml KW jn) = TET5, 805,
Wt ko KIW— jn) = (W kom | K [W4 jn) = O. (40)

The above Kernel is precisely the propagator for the self-adjoint HamiltoHigg, thus yielding a unitary dy-
namics under continuous observation. This is the main result of the section. The relativistic “particle” evolving
under the Dirac Hamiltonian under constant observatighimwa box does not ever leave the box. That is not to

say that the time evolution is trivial. The particle behaves as if it is subject to an external potential of the type
yOM[1— 54 (x)]in the infinite M limit. This would follow immediately from the MS theorem were it not for that

fact the Dirac operator is not lower semi-bounded. Since this is only a specific example, perhaps the direction in
which the MS theorem can be extended is by relaxing the requirement that the Hamiltonian operator has to be
lower semi-bounded.

References

[1] B. Misra, E.C.G. Sudarshan, J. Math. Phys. 18 (4) (1976) 756.

[2] P. Facchi, S. Pascazio, A. Scardicchio, L.S. Schulman, Phys. Rev. A 65 (2001) 012108.

[3] R. Liboff, Introductory Quantum Mechanics, Addison—-Wesley, New York, 1980.

[4] P. Alberto, C. Fiolhais, V.M.S. Gil, Eur. J. Phys. 17 (1996) 19.

[5] A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, V.F. Weisskopf, Phys. Rev. D 9 (1974) 3471.
[6] F. Mandl, G. Shaw, Quantum Field Theory, Wiley, New York, 1984.

[7] P. Facchi, V. Gorini, G. Marmo, S. Pascazio, E.C.G. Sudarshan, Phys. Lett. A 275 (2000) 12.



	Dirac particle in a box, and relativistic quantum Zeno dynamics
	Introduction
	Dirac particle in a box
	Relativistic quantum Zeno dynamics
	References


